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Abstract

With the complementary displacement method introduced in this article regarding plates\ it is possible to
deduce a constitutive law of a mechanical model from that of the usual three!dimensional "2!D# model[ The
model studied here is that of a plate undergoing in_nitesimal transformations[ The method is based on an
appropriate kinematic formulation] it decomposes the _eld of displacements into the sum of a principal
displacement\ which allows the usual plate theory concepts to be introduced\ and a complementary dis!
placement which has been greatly neglected in the classical approach[

The classical hypotheses\ whether kinematic like those of Kirchho} or Reissner\ or static like that of plane
constraints\ are replaced here by the sole hypothesis that the laws of external forces are plate laws] the forces
are independent of the complementary displacement and develop no virtual work in a virtual complementary
displacement[ This being assumed\ we show the existence of a global constitutive law linking the _elds of
generalised deformations and generalised constraints\ and also the identical nature of plate equilibrium and
three!dimensional solid problems[

A local constitutive law for plates can only be approached provided the plate is thin enough for its vast
majority to be far enough from the edge[ The most natural way is to assume that the _eld of generalised
deformations is constant^ hence the complementary displacement is the solution of an ordinary di}erential
equation which\ when solved\ gives the constitutive law sought[ The cases to which the equation is applied
are an elastic isotropic material\ producing classical results\ and an elastic sandwich plate\ leading to new
results[ Finally\ when the _eld of generalised deformations is polynomial\ the _elds of complementary
displacements and constraints can be found by polynomial identi_cation\ thus providing Saint!Venant
polynomial solutions\ as well as the sti}ness matrix of a plate _nite element[ Þ 0887 Elsevier Science Ltd[
All rights reserved[

0[ Introduction

In classical works on Strength of Materials the usual models of beams\ plates\ shells etc[\ are
presented as approximations of the common model of reference which is the 2!D continuous
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medium[ The universal character often attributed to the latter can be questioned\ for example when
evaluating the behaviour of a cable which has several levels of strands[ It remains\ nevertheless\
indispensable to have at our disposal clear relations between the mechanical properties of each
and\ more precisely\ to be able to deduce the constitutive law of the model chosen from that of the
2!D model[

To achieve this goal\ textbooks on Strength of Materials use various hypotheses named after
Bernoulli\ Kirchho}\ Mindlin or Reissner[ All consist of restricting the kinematics by\ for example\
assuming that the normals to the mean surface remain rectilinear and normal to the mean surface
"Kirchho}#\ and must be accompanied by static hypotheses\ i[e[ relative to e}orts\ e[g[ that of
plane stresses[

Moreover\ most authors do not specify whether the quantities which they neglect\ e[g[ {{transverse
shearing||\ should be regarded as small or null] for the sake of coherence it might be advisable\ in
the _rst case to verify after the fact\ the supposed smallness\ and in the second to provide the
corresponding constraint equation and introduce the corresponding unknown constraint e}ort[

The purpose of this article is to present\ in the case of plates submitted to in_nitesimal trans!
formations\ a general method for establishing links between Strength of Materials models and the
2!D solid[ It consists of changing the kinematic representation of the latter by decomposing the
total displacement _eld into the sum of a {{principal|| displacement and a {{complementary||
displacement[

The former\ which veri_es the classical kinematic hypotheses such as Kirchho}|s\ is the usual
displacement of the new model^ it bears the concepts of the new model\ e[g[ that of the curve of
the mean surface and consequently that of the bending moment[ The latter\ being the di}erence
between the total displacement of the 2!D solid and the {{principal|| displacement\ makes it possible
to establish the precise link between the two problems by solving the boundary value problem
which naturally arises from the chosen approach[

In fact\ the traditional textbook approaches almost ignore the complementary displacement\
and it is necessary to turn to journals to _nd articles which seriously address the 2!D problem\
such as those by Koiter "0878#\ Koiter and Simmonds "0861#\ Ladeveze "0865\ 0879#\ Levinson
"0879#\ Nair and Reissner "0866#\ Reissner "0864\ 0865\ 0874#\ Touratier "0880#\ Rychter "0876#
or Verchery "0863#[

Besides articles of highest quality\ as those of the authors quoted above and probably some
others\ the bibliography of plates is huge and could be counted\ if necessary\ in cubic meters;
Nevertheless\ good theoretical papers are not numerous and are concerned with elastic behaviour[
On the contrary the present study presents a general approach to plate theory\ independent of the
tridimensional constitutive equation even if\ of course\ the application examples given in the last
part suppose an elastic behaviour and thus make possible comparisons with classical results[

Two hypotheses are introduced here in order that the 2!D solid problem be replaced by a 1!D
problem from which the complementary displacement has disappeared[ The _rst is both kinematic
and static and concerns the laws of external e}orts] they are independent of the complementary
displacement and develop no virtual work in any virtual complementary displacement[ This
property will subsequently be referred to as P] such an e}ort law is in fact a plate e}ort law[ In
practice\ most laws of volume force\ such as gravity\ include property P^ however\ this is not the
case for surface forces\ and particularly for supporting forces[

The two aspects of P are\ as we shall see\ closely linked to Saint Venant|s principle\ according
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to which it is possible to replace a force law by a related law possessing the property\ and it can
even be said that the principle consists essentially of expliciting this possibility[ According to the
hypothesis that all external load laws possess this property\ we establish the equivalence between
the 2!D problem and a plate problem\ to arrive at a {{global|| constitutive law which links a _eld
of generalised stresses "e[g[ bending moment# with a _eld of generalised strains "e[g[ curvature#[
This is where the boundary value problem for the complementary displacement arises[

The hypothesis that the external load laws possess property P replaces the usual hypotheses\
whether they be static such as that of plane stresses\ or kinematic like those of Kirchho}\ MindlinÐ
Reissner or those which have enriched the kinematics of the latter[

The second hypothesis leads to the de_nition of a constitutive law applicable to the interior of
the plane domain occupied by the plate\ and to the calculation of an appropriate constitutive law[
It consists once again of referring to Saint Venant|s principle in order to replace the boundary
value problem by an in_nite _eld problem] as soon as one is su.ciently far from the edge\ the
internal behaviour is independent of the boundary conditions[ Only at this stage does the hypothesis
concerning the thinness in relation to the transversal dimensions of the plate intervene implicitly^
it is thereby possible to assert that the vast majority of the plate is\ in e}ect\ su.ciently far from
the edge[ Since the famous article by Toupin "0854# on beams\ several authors have contributed
remarkable works on this question\ such as those listed in the bibliography at the end of this article
under the names of Knowles "0855#\ Knowles and Horgan "0858#\ Horgan "0871#\ Horgan and
Knowles "0872#\ and Ladeveze "0872#[

Nevertheless\ no accurate local constitutive law exists for the new model\ and we _nd ourselves
confronted with two possibilities] either we seek to create a mechanical model of the plate with its
own local constitutive equation or we seek a constitutive equation for a plate _nite element[

In the _rst alternative the obvious approach is to establish the law for a constant _eld of
generalised strains] namely to solve an ordinary di}erential equation which will give\ depending
on the generalised strains\ the secondary _eld\ followed by that of the stresses\ and _nally that of
the generalised stresses[

In the _nite element approach the situation is very di}erent] for a start\ the problem of the edge
is irrelevant\ except if it is to be located at the boundary[ Moreover\ the _eld of generalised strains
is given in polynomial form depending on the generalised displacements at the nodes^ so\ in the
case of linear elasticity\ it is possible to identify exactly the _elds of secondary displacements and
2!D stresses in polynomial form\ as we shall show\ to a degree equal to or less than two\ which
should normally be feasible to any degree[

These solutions are given\ obviously\ for an elastic\ homogeneous and isotropic material[ They
are also given for one of the most interesting applications of the theory] the treatment of plates
composed of several orthotropic layers[ The vital contribution of formal calculation tools "here
Mathematica# to the implementation of the method must be underlined here^ if publication of the
theory\ which was conceived in the 69|s\ was postponed\ it was because the tools necessary to
implement it were not available at the time[ Manual polynomial identi_cation would indeed be a
Herculean task[

This article includes only the purely mechanical aspects of the theory\ in order to be more easily
read by those who have no particular taste for the mathematical notions which are detailed in
another article to be published later on where the functional analysis aspects and the questions of
duality in coupling the 2!D model and the plate model are dealt with[ It will be demonstrated\ in



B[ Nayroles : International Journal of Solids and Structures 25 "0888# 0218Ð02570221

particular\ that the choice of functional spaces for the latter may be deduced from the choice made
for the former\ and that it is possible to deduce also two important {{closedness|| theorems for the
plate from the fact that they have already been established for the 2!D solid[

1[ Preliminary developments

1[0[ Geometry

The 2!D Euclidian space is brought to the Cartesian coordinates "x\ y\ z#[ The unit vectors of
the axes are denoted i\ j\ k[

In the strict sense of the term\ a plate is a solid S which\ in the state of reference\ occupies a
volume C of the form]

C � V×$−
h
1

\
h
1%

where the thickness h is a constant\ V an open bounded domain of the plane "x\ 9\ y#\ with
boundary 1V[ Such is the case of the square plate shown in Fig[ 0[ To enlarge the _eld of practical
application of the theory this sense is extended to solids of variable thickness\ symmetrical with
regard to plane "x\ 9\ y#]

C � 6"x\ y\ z#:"x\ y# $ V\ =z= ¾
h"x\ y#

1 7 "0#

In this case it is generally assumed that the thickness varies slowly\ except possibly in the vicinity
of the edge 1C[

The boundary 1C of domain C is made up of three faces] lower 10C\ upper 11C and side 12C]

Fig[ 0[ A plate as a 2!D solid[
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10C � 6"x\ y\ z#:"x\ y# $ V\ z � −
h
17

11C � 6"x\ y\ z#:"x\ y# $ V\ z �
h
17

12C � 6"x\ y\ z#:"x\ y# $ 1V\ =z= ³
h
17 "1#

The side face can be reduced to a line when the thickness vanishes on the edge[ CÞ denotes the
closed set C k 1C[

In our _rst approach no hypothesis is made regarding the thickness\ which need not be small in
comparison with the other dimensions\ nor vary slowly in "x\ y#[ The solid considered here presents
no particular features other than its geometrical symmetry with respect to the plane "x\ 9\ y#[ It is
its kinematic description which will make it a plate[

1[1[ Decomposition of the displacement _eld and `eneralised displacements

The solid S can be regarded as engendered by the generic particle P"x\ y\ z#] such is the viewpoint
of the 2!D continuous media theory^ the elementary mechanical being of the plate theory is not
the particle but the {{normal||\ i[e[ the material segment]

N"x\ y# � 6"x\ y\ z#:=z= ¾
h"x\ y#

1 7
The classical hypotheses of plate theories assume that the normal is indeformable\ apart from

longitudinal dilation or contraction o22"z#[ In the Kirchho}ÐLove hypothesis the normal remains
normal to the deformed mean plane\ while according to the MindlinÐReissner hypothesis it can
lean over the latter[ We make neither of these hypotheses\ but instead decompose the entire _eld
of displacements U into]

U � V¦u "2#

where the {{principal _eld of displacements|| V gives the normals a rigid displacement and\ more!
over\ minimises the quadratic error]

>u>1"x\ y# � g
h:1

−"h:1#

=U"x\ y\ z#−V"x\ y\ z# =1 dz "3#

In other words\ when the entire _eld U is given\ the principal _eld V provides the best approxi!
mation\ of those which keep the normals rigid[

Let us now enter the hypothesis of in_nitesimal transformations and determine V by minimizing
"3#[ As V keeps the normals indeformable it takes the form]

V"x\ y\ z# � v0i¦v1j¦wk−b0zi−b1zj

and in column form]
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"V# � 8
v0−b0z

v1−b1z

w 9 "4#

The quantities v0\ v1\ w\ b0 and b1 are functions of "x\ y# only[ Minimising "3# then gives the
following "relations#]

8
v0

v1

w 9�
0
h g

h:1

−"h:1# 8
U0

U1

U2
9 dz^ b0 � −

0
I g

h:1

−"h:1#

U0z dz^ b1 � −
0
I g

h:1

−"h:1#

U1z dz "5#

where I is the moment of inertia of the normal]

I �
h2

01

The {{complementary _eld|| u\ which is the di}erence between U and V\ is thus\ a solution of the
following constitutive equations]

g
h:1

−"h:1# 8
u0

u1

u2
9 dz � 9^ g

h:1

−"h:1#

u0z dz � 9^ g
h:1

−"h:1#

u1z dz � 9 "6#

The _ve components v0\ v1\ w\ b0 and b1 taken together\ usually grouped in column q\ are named
{{generalised displacement||[ This is the nodal variable used in many _nite element codes[ If the
vectorial character of these quantities is of particular interest\ triplet "v\ w\ b# will be considered
bearing in mind that v and b are vectors of plane "x\ 9\ y#\ i[e[ invariable in plane co!ordinate
changes[

It is the particular form "4# of principal _eld V which gives rise to the classical concepts of the
plate theory\ by means of developments which we shall recall in this paragraph[

Notation
Let I be the identical operator\ A the linear operator de_ned by the formulae "5# and A¦ the

operator de_ned by formula "4#[ We have]

q � AU^ V � A¦q^ AA¦ � I "7#

These operators\ and their de_nition domain\ are shown in detail in Nayroles[

Remark 0] average displacement and displacement of the mean plane[

The principal _eld is de_ned by integrals\ the existence of which raises no problem^ in particular\
V"x\ y\ 9# is the average displacement and not the displacement of the mean plane^ indeed\ one
usually has]

V"x\ y\ 9# � U"x\ y\ 9#
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and\ moreover\ this displacement U"x\ y\ 9# may well be unde_ned almost everywhere on V while
the theory of integration ensures that V"x\ y\ 9# is de_ned whenever U is summable on C[

Remark 1] elementary plate theory[

In the elementary theory the normals to the mean plane remain orthogonal to its deformed
surface[ We have just seen that the latter must be replaced by the mean deformed surface denoted
by w[ The elementary theory is thus the particular case where it is necessary to introduce the
constitutive relation]

b � grad"1#w "8#

n[b[] from now on\ as in the above relation where]

grad"1# � i
1

1x
¦j

1

1y

the superscript {{"1#|| will be attributed to the plane operators of vectorial or tensorial analysis[

Remark 2] abbreviated language[

To avoid repetition the word {{_eld|| will be omitted whenever its absence does not lead to
confusion[ For example\ the terms {{displacement|| and {{strain|| will be used rather than {{dis!
placement _eld|| and {{strain _eld||[

1[2[ Virtual work of external forces] `eneralised efforts

A solid is submitted to two types of force] on the one hand\ {{external|| forces generally modelled
by surface or volume strain densities\ or by concentrated forces^ and on the other\ {{internal|| forces
usually modelled by a _eld of stress tensors[ To introduce the concept of {{generalised e}orts|| in
plate modelling\ the following vocabulary will be used] the expression {{generalised e}orts|| will be
used to refer to the modelling of the external forces only\ without it being necessary to specify
the adjective {{external||^ the term {{generalised stress|| will be synonymous with the expression
{{generalised internal force||\ which will not be used[

The external forces will be shown as a volume strain density on C and as a surface density on
its boundary 1C[ Given the particular geometry of the solid\ the external forces it is submitted to
are expressed as]

F �"f\ F0\ F1\ F2# "09#

where]

, f is a volume force density exerted on C^
, F 0\ F 1\ F 2 are surface force densities exerted respectively on 10C\ 11C\ 12C[

The virtual work of the external forces in virtual displacement dU is]

ððdU\ FŁŁ2 � gC
f = dU dV¦ s

i�0\1\2 g1iC
Fi = dU dS "00#
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where dV is the volume element and dS the surface element[ The signs ðð[ \ [ŁŁ2 designate the
bilinear form of the virtual work in the 2!D model[

The above decomposition is applied to the _eld dU and the virtual work of the external forces
in principal _eld dV is calculated by using formula "4#\ resulting in]

ððdV\ FŁŁ2 � gV
"g = dv¦pdw¦c = db# dx dy¦g1V

"G = dv¦Pdw¦C = db# ds "01#

where]

F

G

j

J

G

f

g �"F0
0¦F1

0#i¦"F0
1¦F1

1#j¦g
h:1

−"h:1#

ð f0i¦f1jŁ dz

p � F0
2¦F1

2¦g
h:1

−"h:1#

f2 dz^ c � −g
h:1

−"h:1#

zð f0i¦f1jŁ dz

"02#

G � g
h:1

−"h:1#

ðF2
0i¦F2

1jŁ dz^ P � g
h:1

−"h:1#

F2
2 dz^ C � −g

h:1

−"h:1#

zðF2
0i¦F2

1jŁ dz "03#

, "g¦pk\ c# is the {{local torsor|| in V\ i[e[\ the surface density on V of the torsor of the forces
exerted on the points of an internal normal[ Its sum is decomposed into a plane component g

and a component p\ while because of the de_nition of vector b which is deduced from the rotation
vector of the normal by a rotation of p:1 in plane "x\ 9\ y#\ the torque is represented by the vector
c of plane "x\ 9\ y#[

, "G¦Pk\ C# is the {{local torsor|| in 1V\ i[e[\ the line density on 1V of the torsor of the forces
exerted on the points of a normal of the side boundary 12C[

Similarly to the way the triplet q �"v\ w\ b# has been named {{generalised displacement||\ the
term {{generalised e}ort|| will be used for the sextuplet Q �"g\ p\ c\ G\ P\ C# associated with dq in
the expression "01# of the virtual work of the external forces[ This can now be written with the
help of the new bilinear form ðð[ \ [ŁŁ]

ððdq\ QŁŁ � gV
"g = dv¦pdw¦c = db# dx dy¦g1V

"G = dv¦Pdw¦C = db# ds "04#

Notation
The linear operator de_ned by formulae "02# and "03# which associates generalised e}ort Q with

external force F is denoted by A¦T]

Q � A¦TF "05#

Indeed\ transposition equality is derived from "01# and "04#]

[dq[F] ððdq\ A¦TFŁŁ � ððA¦dq\ FŁŁ2

1[3[ Generalised strains

The total strain is the symmetrical part of the gradient of the total displacement]

o � gradsU "06#

i[e[\ in index notation]
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oij �
0
1 0

1Uj

1xi

¦
1Ui

1xj1
The decomposition "2# of U gives rise to the corresponding decomposition of o into]

o � e¦h with e � gradsV and h � gradsu "07#

While complementary displacement u and strain h which it generates have not to be developed\
principal displacement V and strain e\ on the contrary\ convey the classical concepts of plate
theory[

By replacing\ in "07#\ V by its expression "4#\ we obtain]

e �

K

H

H

H

H

H

H

H

k

1v0

1x
−z

1b1

1x
0
1 0

1v1

1x
¦

1v0

1y
−z

1b1

1x
−z

1b0

1y 1
0
1 0

1w
1x

−b01
0
1 0

1v1

1x
¦

1v0

1y
−z

1b1

1x
−z

1b0

1y 1
1v1

1y
−z

1b1

1y
0
1 0

1w
1y

−b11
0
1 0

1w
1x

−b01
0
1 0

1w
1y

−b11 9

L

H

H

H

H

H

H

H

l

"08#

which is decomposed\ in turn\ into the sum of the two terms]

e � emem¦eflex "19#

The _rst is the strain of the plate in its plane\ or {{membrane strain||^ its matrix takes the form]

ðememŁ �

K

H

H

H

H

H

H

k

1v0

1x
0
1 0

1v1

1x
¦

1v0

1y 1 9

0
1 0

1v1

1x
¦

1v0

1y 1
1v1

1y
9

9 9 9

L

H

H

H

H

H

H

l

� & ðe
"1#
memŁ 6

9

97
ð9\ 9Ł 9

' "10#

where ðe"1#
memŁ is the plane tensor matrix e"1#

mem[ We have]

e"1#
mem � grad"1#

s v "11#

The second term of "19#\ e~ex\ is interpreted as the strain caused by bending and is written]

ðeflexŁ � $
−zðxŁ 0

1
"g#

0
1
ðgŁ 9 % "12#

with]
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"g# �

F

j

J

f

1w
1x

−b0

1w
1y

−b1

J

f

F

j

in other words] g � grad"1#w−b "13#

and with]

ðxŁ �

K

H

H

H

H

k

1b0

1x
0
1 0

1b1

1x
¦

1b0

1y 1
0
1 0

1b1

1x
¦

1b0

1y 1
1b1

1y

L

H

H

H

H

l

in other words] x � grad"1#
s b "14#

Vectorial _eld "x\ y#Ł g"x\ y# is named {{transverse shear strain _eld||[
Quantity x"x\ y# is a curvature type tensor[ The curvature tensor of the deformed mean surface

has the matrix]

ðgrad"1# grad"1# wŁ �

K

H

H

H

H

k

11w

1x1

11w
1x 1y

11w
1x 1y

11w

1y1

L

H

H

H

H

l

� ðxŁ¦ðgrad"1#
s gŁ "15#

The triplet]

j �"e"1#
mem\ g\ x# "16#

constitutes the {{generalised strain|| of the plate[ It possesses eight independent scalar components^
e"1#

mem and x are tensors of plane "x\ 9\ y# and g a vector of the same[
Formulae "12#\ "13# and "14# de_ne deformation operator Dp of the plates^ it takes us from

generalised displacement q to generalised strain j^ we write]

j � Dpq "17#

and\ taking a slight liberty with notation in order to obtain a condensed formula]

j � 8
e"1#

mem

gx 9^ Dp � &
grad"1#

s 9 9

9 grad"1# −0

9 9 grad"1#
s
'^ q � 8

v

w
b9 "18#

It should be noted that it might be useful to add to the second member of "17# a term j9 of
imposed strain^ it could designate strains of thermal origin or those caused by generalised dis!
placements imposed by constraints[

Finally\ formula "08# which gives the tensor of the strains due to the principal displacement is
written]
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ðeŁ � ðgradsVŁ � $
ðe"1#

mem−zxŁ 0
1
"g#

0
1
ðgŁ 9 % "29#

where terms "g# and ðgŁ designate\ respectively\ the column and line vectors of the components
of g[

Symbols

Subsequent justi_cation will be given for using the term B¦ for the linear operator\ de_ned by
"29#\ which gives the _eld of principal strains e generated by the _eld of generalised strains j[ We
can write]

e � B¦j � B¦Dpq � B¦DpAV "20#

Local inte`rability of the `eneralised strains
As in the case of 2!D strains\ the problem arises of the local integrability of generalised strains

j[ The following proposition can be easily proved]

Proposition 0
Let j �"e"1#

mem\ x\ g# be a de_ned _eld of generalised strains\ twice continuously di}erentiable in
V[

There exists\ in any V simply connex open part\ a generalised displacement _eld q �"v\ w\ b#
such that]

j � Dpq

if and only if j holds the following conditions of local integrability]

11e"1#
mem11

1x1
¦

11e"1#
mem00

1y1
−1

11e"1#
mem01

1x 1y
� 9 "21#

11g0

1y 1x
−

11g1

1x1
� 1 0

1x01

1x
−

1x00

1y 1
11g0

1y1
−

11g1

1x 1y
� 1 0

1x11

1x
−

1x01

1y 1 "22#

11x11

1x1
¦

11x00

1y1
−1

11x01

1x 1y
� 9 "23#

Thus\ v is determined to within one rigid plane displacement\ b to within one constant additive
vector\ w to within one constant additive[ In other words\ q is de_ned to within one solid
displacement[

A condition of global integrability of the generalised strains will be given later[
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1[4[ Virtual work of the internal forces and `eneralised stresses

In the 2!D model e}orts inside the solid are represented by _elds of stress tensors s and their
virtual work in _eld do of virtual strain tensors by the integral]

ðdo\ sŁ2 � −gC
s] do dV "24#

and this de_nition can be extended to tensor _elds do\ whether or not they be of form gradsdv[
Relation "29# de_nes operator B¦ which\ to the value of generalised strain j at point "x\ y# of V

associates a tensor e � B¦j at all points "x\ y\ z# of the normal[ Whether or not _eld dj be of the
form Dpq we can therefore de_ne the virtual work of the internal forces as quantity ðB¦dj\ sŁ2[
By _rst integrating in z we obtain]

ðB¦dj\ sŁ2 � −gV
"de"1#

mem] N¦db = T¦dx] M# dx dy "25#

where quantities N\ T\ M are linked to the 2!D stresses by]

N �

K

H

H

H

H

k

g
h:1

−"h:1#

s00 dz g
h:1

−"h:1#

s01 dz

g
h:1

−"h:1#

s01 dz g
h:1

−"h:1#

s11 dz

L

H

H

H

H

l

^ T �

F

G

j

J

G

f

g
h:1

−"h:1#

s02 dz

g
h:1

−"h:1#

s12 dz

J

G

f

F

G

j

^

M �

K

H

H

H

H

k

g
h:1

−"h:1#

zs00 dz −g
h:1

−"h:1#

zs01 dz

−g
h:1

−"h:1#

zs01 dz −g
h:1

−"h:1#

zs11 dz

L

H

H

H

H

l

"26#

N being the membrane stress tensor\ T the shear e}ort vector\ M the ~exion!torsion tensor[
Each of these elements can be named generalised stress\ as can the triplet Z �"N\ T\ M#[

Symbols
Let B¦T be the linear operator de_ned by formulae "26#]

Z � B¦Ts "27#

The integral which constitutes the second member of "25# will be]

ðdj\ ZŁ � −gV
"de"1#

mem] N¦db = T¦dx] M# dx dy "28#

It is the virtual work of generalised stress Z in the virtual generalised strain dj[ Notation B¦T is
justi_ed by the next equation directly derived from "25#\ "27# and "28#]
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[dj[s] ðdj\ B¦TsŁ � ðB¦dj\ sŁ2

1[5[ Plate equilibrium equations

The equilibrium equation between the sum F of the external forces and the stress s is that of
the virtual work]

[dU] ððdU\ FŁŁ2¦ðgradsdU\ sŁ2 � 9 "39#

where\ for the sake of simplicity\ test _elds dU are inde_nitely di}erentiables[
Similarly\ in this preliminary paragraph\ constraint conditions will be regarded as particular

external force laws^ thus\ test _elds dU are free of any constraints[
The decomposition of dU into a principal _eld dV and a complementary _eld du enables us to

write the following system\ clearly equivalent to "39#]

[dV] ððdV\ FŁŁ2¦ðgradsdV\ sŁ2 � 9 "30[0#

[du] ððdu\ FŁŁ2¦ðgradsdu\ sŁ2 � 9 "30[1#

where test _elds dV are of principal type\ i[e[\ of the form A¦dq\ while test _elds du are of
complementary type\ i[e[\ solutions of constraint equations "6#[

Thanks to the above developments it is possible to replace in "30[0#\ dV\ gradsdV\ F and s\
respectively\ by the {{generalised|| quantities dq\ Dpdq\ Q and Z which they produce[ The following
result is\ thus\ easily obtained]

Proposition 1
Equation "30[0# is equivalent to equation]

[dq] ððdq\ QŁŁ¦ðDpdq\ ZŁ � 9 "31#

where] Q � A¦TF is the generalised e}ort produced by F according to series "02# and "03#\
Z � B¦s is the generalised e}ort produced by s according to series "26#[

It is then a classical exercise of variation calculation to obtain the following proposition]

Proposition 2
If "Q\ Z# satis_es "31# and if] Q is continuously derivable in V\ Z is composed of continuous

_elds "some in V\ others on 1V#\ then "Q\ Z# is solution of the following equations]

in V on 1VMembrane equations div"1#N � −g N = n � G "32#

Flexion equations div"1#T � −p T = n � Pdiv"1#M¦T � −c M = n � C "33#

Global integrability condition for generalised strains[
As in the case of the 2!D continuum a particular interest should be given to selfequilibrated

generalised strain _elds\ i[e[\ to those which are solutions of the above equations with null right!
hand members[ For plates also the following integrability condition can be proved "cf Nayroles#]

Theorem 0
Let j be a de_ned _eld of generalised strains[ There exists a generalised displacement _eld q such

that]
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j � Dpq

if and only if j is orthogonal to any self equilibrated _eld of generalised stresses\ i[e[]

[Z $ Z9] ðj\ ZŁ � 9

where Z9 denotes the vector!space of self equilibrated generalised stress _elds i[e[]

Z9 � "Z:[dq] ðDpdq\ ZŁ � 9#

2[ Equilibrium problems and constitutive equations

2[0[ Force laws

We are going to consider external force laws\ i[e[ correspondences between the history tŁU	 "t#\
of displacement U and that\ tŁF	 "t#\ of external force F[ As the linear operators used\ A\ B¦\
grads etc[\ are independent of time and of the real value of the variables "the transformations here
are in_nitesimal#\ it is probable that the general nature of what follows will not be markedly
lessened by limiting ourselves to the correspondences between the current values of U and of F[

It may be a question of multivalued correspondences as in the case of constraints^ therefore\ F
designating an external force law we choose to denote the correspondence]

F $ F"U# "34#

where set F"q# is perhaps empty[ The mechanical notion of force law is thus associated with the
mathematical notion of multivalued function[

If many force laws reduce in fact to applications\ F"q# being reduced to one point\ constraint
laws appear indeed as multivalued force laws[ If we consider the case where the displacements
compatible with the constraint\ seen as a whole\ are an a.ne variety U9¦U0] U9 is an imposed
displacement\ U0 a vector space[ The hypothesis of in_nitesimal transformations makes such a
situation very common[ If the constraint is {{frictionless|| the constraint force is arbitrary in the
orthogonal of U0 and law FL which de_nes this constraint is]

U ( U9¦U0cFL"U# � /

U $ U9¦U0cFL"U# � "FL] [dU $ U0ððdU\ FLŁŁ2 � 9# "35#

It expresses simultaneously that the displacement belongs to the permitted set and that the
constraint force is undetermined as long as its work vanishes in all virtual displacements compatible
with the constraint[

Similarly\ a generalised e}ort law is a multi!application which de_nes the correspondence]

Q $ Q"q# "36#

2[1[ Zero complementary virtual work forces

The following proposition gives the general form of external forces of zero virtual work in all
complementary displacements]
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Proposition 3[ Characterisation of zero complementary virtual work forces[
Let F �"f\ F 0\ F 1\ F 2# be an external force^ we have the property]

[du] ððdu\ FŁŁ2 � 9

if and only if

, F 0 and F 1 are zero^
, the components along x and y of f and of F 2 are af_ne functions of z\ the coe.cients of which

depend on "x\ y#]

f0 � l0"x\ y#¦zl3"x\ y#^ F2
0 � m0"x\ y#¦zm3"x\ y# "37#

f1 � l1"x\ y#¦zl4"x\ y#^ F2
1 � m1"x\ y#¦zm4"x\ y# "38#

, the components along z of f and of F 2 depend only on "x\ y#]

f2 � l2"x\ y#^ F2
2 � m2"x\ y# "49#

Proof of this is established in Nayroles[ But it can already be seen that if F is of the above form
it is indeed of zero work in any displacement which complies with constraint equations "6#^ for the
reverse to be true it is necessary to take some precautions in analysis[ Coe.cients li and mi appear
as Lagrange multipliers associated with constraints "6# imposed on complementary displacements[

Now if F is of the form given by proposition 3 it produces the generalised e}ort]

Q �"g\ p\ c\ G\ P\ C# � A¦TF
with]

g � hl0i¦hl1j^ p � hl2^ c � Il3i¦Il4j

G � hm0i¦hm1j^ P � hm2^ C � Im3i¦Im4j "40#

Conversely\ any generalised e}ort Q is associated with a sole external force F of the form given
by proposition 3 for coe.cients li and mi easily calculated with the help of formulae "40#[ AT

denotes the corresponding linear operator]

F � ATQ

which obviously veri_es]

[Q] A¦TATQ � Q

The following transposition equality is then derived from "05#]

[dV\[Q] ððdV\ ATQŁŁ � ððAdV\ QŁŁ2

and justi_es notation AT[ At last A¦T is the right!hand inverse]
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Fig[ 1[ Displacement and e}ort functional spaces and the operators connecting them[

ATA¦T � I

The situation can then be described by the following diagram]
where multiapplications F and Q designate laws of external force and of generalised e}ort\ the
equivalence of which we are now going to study[

2[2[ Equivalence between a law of external force and a law of `eneralised effort

Let us now return to equilibrium equations "30#\ "31# and to proposition 1[ We are trying to
discover whether force laws "34# and "36# can be equivalent\ in the sense of equivalence between
systems "30[0#¦"34# and "31#¦"36# when variables V\ q\ F\ Q are constrained by the habitual
relations]

q � AV^ Q � A¦TF "41#

In the following de_nition two properties\ which are obviously necessary for this equivalence to
exist\ are combined to make one\ named property P "like the _rst letter of the word {{plate||#[ The
_rst is that the force is of zero complementary virtual work[ The second is that the generalised
e}ort it produces is independent of the complementary displacement\ i[e[]

[V[u]"A¦T
>F#"V¦u# � A¦T

>F#"V#

But then law F is independent of u since for all virtual displacements we have]

ððdV¦du\ F"V¦u#ŁŁ2 � ððdV\ F"V¦u#ŁŁ2 � ððdq\ A¦TF"V¦u#ŁŁ

� ððdq\ A¦TF"V#ŁŁ � ððdV\ F"V#ŁŁ2 � ððdV¦du\ F"V#ŁŁ2

We are\ thus\ led to pose the following de_nition]

De_nition 0[ Property P of an external force law[
An external force law F possesses property P if\ by de_nition]

0[ the external force it de_nes does not work in virtual displacements of the complementary type\
i[e[]
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[du] ððdu\ F"V¦u#ŁŁ2 � 9 "42#

1[ it is independent of the complementary displacement\ i[e[]

[V[u] F"V¦u# � F"V# "43#

Proposition 4
The external force law F possesses property P if and only if it is equivalent to the generalised

e}ort law Q de_ned by]

Q � A¦T
>F>A

¦ "44#

which means that conversely]

F � AT
>Q>A "45#

Indeed\ notice that "45# implies "44#\ since A¦ and AT are respective right!hand inverses of A

and A¦T^ now if force law F possesses property P then Fig[ 1 shows that "42# and "43# can be
written\ respectively]

\F � AT
>A

¦T
>F "42#

\F � F>A
¦

>A "43#

which yield "45#[ Conversely "45# implies "42# and "43#\ which ends the proof[
Now let us consider constraint law FL de_ned in "35#[ It is proved that FL possesses property

P if and only if U0 contains all the complementary displacements[ If we then pose]

q9 � AU9 and W0 � A"U0# "46#

FL is equivalent to the frictionless constraint law QL associates with the a.ne manifold q9¦W0]

q ( q9¦W0cQL"q# � /

q $ q9¦W0cQL"q# � "QL] [dq $ W0ððdq\ QLŁŁ2 � 9# "47#

The 2!D!constitutive laws envisaged are also multivocal correspondences which will be written]

s $ K2"o# "48#

limiting ourselves\ as in the case of external e}ort laws\ to correspondences between the values of
the strain and of the stress at the moment under consideration[

Such as it has just been described\ this law can be a correspondence between _elds\ i[e[\ a {{non!
local|| law[ In fact\ we shall assume later that it is local\ i[e[\ of the form]

s"P# $ K2"o"P#\ P# "59#

where P designates the point "x\ y\ z#[

2[3[ Equilibrium problem of the 2!D model and plate problem

System "30# is that of the equilibrium equations of an ordinary 2!D solid\ but whose kinematic
description contains that of plates[ In order to pose a problem of equilibrium it is necessary to
combine e}ort laws with this equation] the laws of external forces\ and the material constitutive
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law[ The constraint laws\ or\ if preferred\ support conditions of the solid\ are obviously particular
external e}ort laws[ The corresponding system can be written]

[dV] ððdV\ FŁŁ2¦ðgradsdV\ sŁ2 � 9 principal equilibrium equ[ "50[0#

F $ F"V¦u# external force law "50[1#

[du] ððdu\ FŁŁ2¦ðgradsdu\ sŁ2 � 9 complementary equilibrium equ[ "50[2#

o � grads "V¦u#¦o9 displacementÐstrain equ[ "50[3#

s $ K2"o# 2!D!constitutive law "50[4#

This formulation requires commentary[
Quantity o9 designates a _eld of imposed strains\ which may be of thermal origin0 for example\

but which may also result from a displacement imposed by constraints[
Letter F designates the sum of all the external e}orts\ let us say Fi\ each being governed by a

law Fi[ Law F is the sum of laws Fi\ in other words\ set F"V¦u# is the direct sum of sets
Fi"V¦u#[

Among the Fi are the constraint relations which de_ne the load conditions[
The objective of the theory is to replace the 2!D equations of system "50# by a bidimensional

system which is concerned only by generalised variables\ i[e[\ of the following form]

[dq] ððdq\ QŁŁ¦ðDpdq\ ZŁ � 9 plate equilibrium equ[ "51[0#

Q $ Q"q# generalised effort law "51[1#

j � Dpq¦j9 gen[ disp[Ðgen[ def[ relation "51[2#

Z $ Kp"j# plate constitutive law "51[3#

At this point it is irrelevant to know whether Kp is local or not] it is merely a correspondence
between generalised strain _elds and generalised stress _elds[

Let us attend _rst of all to determining the conditions by which system "51# arises from system
"50#[

Equation "51[0#\ as was seen in proposition 1\ is equivalent to eqn "50[0# when Z � B¦Ts is the
generalised stress produced by s and Q � A¦TF the generalised e}ort produced by F[

In order that eqn "50[1# give rise to eqn "51[1# it is necessary and su.cient that F possesses the
following property]

[u] "A¦T
>F#"V¦u# �"A¦T

>#F"V# "52#

and the value of Q is then A¦T
>F>A

¦[
To return to relation "20#\ which links principal strain e according to generalised strain j\ it is

seen that "50[3# brings about]

0 We shall choose o9 � −au\ where au is the thermal dilatation tensor at temperature u\ which allows us to keep
constitutive law K2 when it does not depend on u[
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o � B¦j¦gradsu¦o9 "53#

where j\ as in "17#\ is equal to Dpq\ i[e[ DpAV[
Taking "53# into account\ eqns "50[2# and "50[4# are now written]

[du] ððdu\ FŁŁ2¦ðgradsdu\ sŁ2 � 9 "54[0#

s $ K2"B¦j¦gradsu¦o9# "54[1#

Fields u and s are\ for F given\ the unknowns of this system[ For its possible solutions to depend
only on j the virtual work ððdu\ FŁŁ2 must be zero^ therefore\ law F must possess the following
property]

F $ F"V¦u#c ððdu\ FŁŁ2 � 9 "55#

So it is necessary that law F possesses both property "52# and "55#\ i[e[ property P\ and that it
therefore be equivalent to the law of generalised e}ort denoted Q de_ned in "44#[

It is also convenient\ although not indispensable to the present theory\ that the solution of "54#
should not depend on the 2!D _eld o9\ which varies from one case to another\ but rather on a 1!D
_eld j9 as in "51[2#[ Accordingly\ o9 is attributed the form]

o9 � B¦j9 "56#

which\ now using de_nition "51[2# of j\ enables "53# to be written]

o � B¦j¦gradsu

where no imposed strain remains[
Under these conditions\ system "54# appears in its _nal form]

s $ K2"B¦j¦gradsu# [du] ðgradsdu\ sŁ2 � 9 "57#

pair "u\ s# being the unknown[
C"j# denotes the ensemble\ which may be empty\ of the solutions of "57#\ U"j# and S"j# its

projections on the spaces of the u|s and the s|s]

u $ U"j#\ \ s] "u\ s# $ C"j#

s $ S"j#\ \ u] "u\ s# $ C"j#

The plate constitutive law can then be written in the form]

Kp � B¦TS "58#

It was\ thus\ supposed that external force law F possesses property P and\ also\ that the _eld
of imposed strains o9 has the form "56#[ In fact we have demonstrated that if quintuplet "V\ u\ F\ o\ s#
solves the 2!D problem "50#\ then the quadruplet "q\ Q\ j\ Z# solves plate problem "51# for]

q � AV^ Q � A¦TF^ j � DpAV^ Z � B¦Ts

and for the plate constitutive law given in "58#\ from the solutions of fundamental equation "57#[
Inversely\ let "q\ Q\ j\ Z# be a solution of problem "51# for this plate constitutive law[ The
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equivalence\ temporarily admitted\ between laws F and Q means that there exists a force F\ of
zero complementary virtual work\ such that "50[1# be satis_ed for V � A¦q and any u\ and _nally
such that Q � A¦TF[

It follows that\ as j and Z satisfy "51[3#\ there exists a pair "u\ s#\ solution of "57# and such that
Z � B¦Ts[ As Q and Z are in equilibrium in accordance with "51[0# external e}ort F and stress s

prove the principal equilibrium equation "50[0#[
According to "51[2# j equals]

j � Dpq¦j9 � DpAV¦j9

so that when we write]

o � B¦j¦gradsu and o9 � B¦j9

_eld o proves "53# and pair "o\ s# veri_es constitutive law "50[4#[
Finally\ as "u\ s# solves "57# and F is of zero complementary work\ eqn "50[2# is also satis_ed[
In the end\ quintuplet "V\ u\ F\ o\ s# solves the 2!D problem\ and the following theorem can be

stated]

Theorem 1[ Equivalence between the plate problem and the 2!D problem[
If the external e}ort laws are equivalent to generalised e}ort laws "property P#\ if the _eld of

strains o9 imposed on the 2!D milieu is of the form "56#\ then there exists a global plate constitutive
law Kp obtained by solving eqn "57# and for which plate problem "51# is equivalent to the 2!D
problem "50#[

Unfortunately\ the constitutive law thus determined is obviously not local[ Dependent in par!
ticular on the plate contour\ it is useless[ The following paragraph will de_ne approximations of
this law by means of local laws[

2[4[ Effort laws and Saint!Venant|s principle

It was supposed that external e}ort law F is equivalent to generalised e}ort law Q^ to what
degree is this hypothesis valid< Let us examine the various types of e}ort which can enter F[

The volume e}orts exerted on a solid very often possesses\ in practice\ property P[ This is the
case for gravity in a homogeneous medium[ On the contrary\ laws concerning e}ort forces exerted
on the upper or lower faces obviously do not possess P[

When any external e}ort law F is to be taken into consideration\ an approximation must be
made by replacing it with a law F which possesses P\ by using the formula]

F"V¦u# � ATA¦TF"V¦u9#

where u9 is a _xed complementary _eld\ chosen arbitrarily and\ hopefully\ wisely\ which is usually
zero[ The corresponding generalised e}ort law is then given by]

qŁ Q"q# � A¦TF"A¦q¦u9#

The quality of the approximation obtained depends on the properties of law F\ but also on the
solid|s behaviour as a whole[ In any case\ replacing F by a law F\ which gives rise to the same
generalised e}ort Q\ is in agreement with what P[ Ladeve�ze ðP[Lad[0[Ł calls Saint!Venant|s principle
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{{in e}ort||^ in parallel\ choosing a particular u9\ to evaluate F"V¦u#\ may be regarded as an
expression of Saint!Venant|s principle in terms of displacements "di}erent from what the same
author calls {{Saint!Venant|s principle for displacements||#[

Similarly\ this principle also applies to the approximation of a _eld of imposed strains o9 by a
_eld of the form B¦j9[

The supporting e}orts practically never possess P since the constraint should only concern the
principal part of the displacement[ Yet\ while the latter possesses a mathematical reality\ it has no
material reality except perhaps in exceptional circumstances[ Physically\ constraint e}orts are
almost always contact e}orts which depend on the total displacement of the points they concern[
What has just been said regarding external e}orts and the generalised strains associated with them\
remains particularly true for constraint e}orts[ However\ most commonly\ we give ourselves the
constraint conditions of a plate directly in terms of generalised displacements and strains\ as shown
in "47#\ without considering how they could appear in the 2!D context[

3[ Constitutive laws and polynomial solutions

3[0[ General method

We return to the fundamental eqn "57# which de_nes the couple of unknown _elds "u\ s#
according to the _eld of generalised strains j[ This {{variational|| system de_nes a boundary value
problem[ The global constitutive law Kp deduced from it is {{accurate||\ in the sense that it enables
us to write the system of plate equations equivalent to the system of the 2!D solid equations[ As
said before\ it presents two major shortcomings] it is not local and it depends on the contour[

The _rst step will be to overcome the second of these drawbacks by using\ in "57#\ not all the
test _elds du\ but only those whose support is of projection on "x\ 9\ y# contained in the open set
V[ It will be convenient to use the following notations]

Notations
Let Uc be the vectorial space of the complementary _elds[
Let "Uc#9 be its orthogonal\ i[e[\ the space of the external e}orts which are of zero virtual work

in all virtual displacement belonging to Uc[
Let Uc

9 be the vectorial subspace of the complementary _elds which vanish outside a cylinder
K×R\ where K is a compact set contained in V[

Let "Uc
9#9 be its orthogonal\ i[e[\ the space of the external e}orts which are of zero virtual work

in any virtual displacement belonging to Uc
9[

Equation "57# is then replaced by]

s $ K2"B¦j¦gradsu#\ [du $ Uc
9] ðgradsdu\ sŁ2 � 9 "69#

leading\ in a sense\ to a constitutive equation in the interior\ or\ in other words\ in the unde_ned
medium[

In order to deduce from this equation a useful di}erential system we _rst establish the following
proposition\ which completes proposition 3]
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Proposition 5
Orthogonal "Uc

9#9 is the space of e}orts F �"f\ F 0\ F 1\ F 2# such that]

, F 0 and F 1 are zero^
, components f0 and f1 of f are a.ne functions of z\ of which the coe.cients depend on "x\ y# while

f2 is independent of z]

f0 � l0"x\ y#¦zl3"x\ y#^ f1 � l1"x\ y#¦zl4"x\ y#^ f2 � l2"x\ y# "60#

Component F 2 is obviously not concerned by Uc
9] it can be anything[ To demonstrate this

proposition we start with the orthogonal space de_nition]

F $"Uc
9#9
\ [du $ Uc

9] gC
f = du dV¦g10C

F0 = du dS¦g11C
F1 = du dS � 9 "61#

The du verify the constraint eqns "6# in such a way that if F0 and F1 are zero and f of the form "60#
then F e}ectively belongs to "Uc

9#9[
To show that the reverse is also true let us consider an open sub!domain Vo whose adherence is

contained in V and whose measure "area# tends towards that of V when o tends towards 9[
Let us write]

Co � C K"Vo×R#

10Co � 10C K"Vo×R#

11Co � 11C K"Vo×R#

Let du be a _eld belonging to Uc\ let duo be its restriction at Co[ We have]

[du $ Uc
\ du? $ Uc

9] duo � du?o

Then]

F $"Uc
9#9
c [du $ Uc] 9 � ðdu?\ FŁ � gCo

f = du dV¦g10Co

F0 = du dS¦g11Co

F1 = du dS

¦gC−Co

f = du? dV¦g10C−10o

F0 = du? dS¦g11C−11Co

F1 = du? dS

The second line of this sum tends towards zero and the _rst towards ðdu\"f\ F0\ F1\ 9#Ł[ We thus
obtain]

F $"Uc
9#9
c"f\ F0\ F1\ 9# $"Uc#9

By using proposition 3 it can be deduced that f\ F0 and F1 are indeed of the form announced by
proposition 5[

By using\ classically\ the identity]
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ðgradsdu\ sŁ2 � gC
gradsdu] s dV � −gC

du = div s dV¦g1C
du = s = n dS

we arrive easily at

Proposition 6
Equation "69# is equivalent to the system]

F

G

G

j

J

G

G

f

div ðK2"B¦j¦gradsu# % "l0¦l3z#i¦"l1¦l4z#j¦l2k

s0x\ y\
h
11 = n1 0x\ y\

h
11� s 0x\ y\ −

h
11 = n0 0x\ y\ −

h
11� 9

g
h:1

−"h:1#

u dz � 9^ g
h:1

−"h:1#

u0z dz � 9^ g
h:1

−"h:1#

u1z dz � 9

"62[0#

"62[1#

"62[2#

where n0 and n1 designate respectively the unit vectors normal to surfaces 10C and 11C[
Considered from the angle of the single variable z this system appears as a di}erential equation

of the second order "62[0# where\ in the second member\ the _ve auxiliary unknowns li are found[
The two boundary conditions "62[1# and the _ve scalar constraint equations "62[2# complete the
system[ The end of this paragraph will be devoted to some common situations where the latter can
be solved] those where the constitutive law is linear and the _eld of generalised strains polynomial[

The manner in which this system has been constructed\ considering only test _elds which are
zero at their edge\ guarantees no validity of results in the vicinity of the latter[ Far from being
surprising\ this restriction is rather reassuring in the sense that it has been known for a long time
that plate theories are only valid at a su.cient distance from the edge\ meaning at a distance
approximately equivalent to the thickness of the plate[

3[1[ Polynomial solutions and accurate laws for _nite elements

From this point on\ we assume that constitutive law K2 is a local application which gives the
stress tensor according to that of the strains]

s"P# � K2"o"P#\ P# where P �"x\ y\ z# "63#

In eqn "62[0# symbol {{%|| should obviously be replaced by {{�||[

Preliminary remarks
In this paragraph we impose particular generalized strains\ i[e[ polynomials of degree 1 with

respect to "x\ y#[ The solutions of system "61# are then sought[ Doing this we have implicitly
introduced constraints^ therefore\ equilibrium equations are not veri_ed and their residues can be
identi_ed to the e}orts associated with these constraints[

Moreover\ imposed generalised strains are any polynomials of degree 1\ which need not verify
compatibility eqns "21# and "22#] the results thus obtained can be applied to problems where a
generalised strain j9 is imposed\ as indicated before[

Ending this paragraph we shall study solutions of Saint!Venant|s type\ i[e[ solutions of the
~exion problem for unloaded areas of the plate[



B[ Nayroles : International Journal of Solids and Structures 25 "0888# 0218Ð02570241

3[1[0[ Constitutive equation
If an approximate plate local constitutive law Kapp is sought\ it is logical to consider a state of

the plate in which the _eld of generalised strains j is constant\ and to look for a complementary
displacement u which is a function only of z\ and a column l of the Lagrange multipliers li which
is constant[ Equation "62[0# then becomes an ordinary di}erential equation of the second order in
z and\ in general\ system "62# allows a single solution "u�\ s�\ l�# which depends on j\ and which
can be written]

s� � S"j# "64#

The generalised stress Z� is calculated by formulae "26# from s�\ thus giving the local plate
constitutive equation]

Kapp � B¦TL "65#

Since eqn "57# has been replaced by eqn "69#\ equivalent to system "62#\ and u� does not belong
to Uc

9\ there is no {{global|| reason why work ðgradsu�\ s�Ł2 should be zero[ However\ since u� is
a function only for z we have]

s�] gradsu� �
1

1z
s
i

"s�i2u�i #−u� = div s� "66#

which yields]

ðgradsu�\ s�Ł2 � gV 6g
h:1

−"h:1# $
1

1z
s
i

"s�i2u�i #−u� = div s�% dz7 dS

which vanishes[ Indeed\ as "u�\ s�\ l�# is a solution of "62#\ the _rst term of the bracket gives an
integral on z which vanishes because of the boundary conditions\ and so does the second because
u� is a complementary _eld\ while div s� veri_es "62[0#[ The work of stress _eld s� in the total
strain _eld is thus reduced to]

ðgrads "V¦u�#\ s�Ł2 � ðj\ L"j#Ł "67#

In particular\ if the law of 2!D behaviour is the linear elasticity\ the elastic energy of the 2!D
stress _eld equals that of the generalised stress _eld[

3[1[1[ Polynomial solutions
More generally\ one may be seeking a solution "u�\ s�\ l�# of system "62# where _eld j is of a

given type\ in particular polynomial[ We have veri_ed\ to the second degree and for a plate of
constant thickness\ the following conjecture]

Conjecture
If the 2!D constitutive law is the linear hyper!elasticity\1 if the _eld of generalised strains j is

polynomial of d degree in "x\ y#\ then solution "u�\ s�\ l�# is polynomial in "x\ y\ z#\ of d degree in

1 That is\ there exists an elastic potential\ or\ in other words\ sti}ness matrix is symmetrical[
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"x\ y#\ and u� is a polynome of d¦2 degree with regard to z[ This conjecture has been veri_ed to
d � 1[

The demonstration of this result is perhaps within the reach of a pro_cient user of formal
calculation methods^ we shall explain later the procedure adopted for d � 1 using {{Mathematica||[

Let us write\ for d � 0\ for example]

j � j9¦j0x¦j1y � JT 8
0

x

y9 with] J � 8
j9

j0

j19
The generalised strains can still be written]

Z�"x\ y# � B¦TL"J\ x\ y# "68#

but now the complementary _eld solution u� no longer needs to verify "66#] the terms arising from
the boundary 12C no longer disappear[ In particular\ expression 0

1
ðj\ B¦TL"j#Ł is no longer equal

to the elastic energy of the 2!D _eld of stresses\ and the pseudo!constitutive law "68#\ which is of
the order of d\ seems to us irrelevant[

On the other hand\ although a tautology\ it is very interesting to note that]

Remark
The polynomial solution provides an accurate assessment of the elastic energy in a _nite element

where the interpolation of the generalised strains is of degree d[

3[1[2[ Polynomial character of the solution with re`ard to z in a homo`eneous milieu
When the milieu is homogeneous and the constitutive law linear\ with a tensor of the elasticity

coe.cients R]

K2"o# � R = o

it is possible\ as was said\ to solve system "62# by polynomial identi_cation[ We seek li polynomials
of degree d in "x\ y#\ and u as a polynome of degree d in "x\ y# of which the coe.cients are solutions
of the linear di}erential equations with constant coe.cients\ obtained by identi_cation from "62[0#[
For a full "and symmetrical# elasticity matrix this identi_cation is not feasible manually\ but can
be done using formal calculation software\ at least for small values of d[

Faced with a linear system the concern is\ of course\ that the solutions may be exponential but
luckily not] all the eigenfrequencies are null[

Subsequently\ the use of formal automatic calculations is not as straightforward as one may
have hoped] the identi_cation of the polynomes in "x\ y\ z# in system "62# produces more equations
than unknowns[ The software can then _nd those which are veri_ed identically\ than those which
are linear combinations of others[ This results in the right number of independent equations as
soon as the degree with regard to z is at least three units higher than d\ at least when d is less than
or equal to two[

We are now going to present the outstanding features of the formal or numerical results obtained
in this way in the case of a plate of uniform thickness[
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3[2[ Elastic\ homo`eneous\ isotropic plates\ of uniform thickness

3[2[0[ Approach to a constitutive law for an elastic\ homo`eneous\ isotropic plate[
We consider a _eld j of constant generalised strains[ In order to save space notation emem is

replaced by o¹[ The solution is thus as follows\ E designating the Young modulus and n the Poisson
coe.cient[

Complementary displacement

u0 � g0z 0
0
3

−
4
2

z1

h11^ u1 � g1z 0
0
3

−
4
2

z1

h11
u2 � −

n

13"0−n#
ð13z"o¹00¦o¹11#¦"h1−01z1#"x00¦x11#Ł "79#

2!D stresses

s00 �
E

0−n1
ðo¹00¦zx00¦n"o¹11¦zx11#Ł^ s11 �

E

0−n1
ðo¹11¦zx11¦n"o¹00¦zx00#Ł

s01 �
E

1"0¦n#
ðo¹01−zx01Ł^ s02 �

4E
1"0¦n# 0

0
3

−
z1

h1 1 g0^ s12 �
4E

1"0¦n# 0
0
3

−
z1

h1 1 g1

Generalised stresses

N00 �
Eh

0−n1
"o¹00¦no¹11#^ N11 �

Eh

0−n1
"o¹11¦no¹00#^ N01 �

Eh
1"0¦n#

o¹01

T0 �
4
5

Eh
1"0¦n#

g0 T1 �
4
5

Eh
1"0¦n#

g1

M00 �
Eh2

01"0−n1#
"x00¦nx11#^ M00 �

Eh2

01"0−n1#
"x11¦nx00#^ M01 �

Eh2

13"0¦n#
x01

{{Correction coe.cient|| of shearing] 4
5
[

This solution appears in all the textbooks on Strength of Materials\ but is classically obtained
by using the equilibrium equation which links the shear e}ort to the divergence at the bending
moment] this implies a linear bending moment Mii in "x\ y# when shear force Ti is constant\ and
consequently also a linear curvature xii^ this situation will be examined in sub!paragraph 3[2[2[
Here\ we consider the generalised strains to be constant[

Let us illustrate this solution by three graphs\ plotted when all the generalised strains are null
except]

g0 � 0

with]

E � 0^ n � 9[14^ h � 0
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The total displacement is calculated by attributing 9 to the values at the origin of principal
displacement V and quantities "1v0:1y#−"1v1:1x#\ 1w:1x and 1w:1y[

3[2[1[ Polynomial solution for _eld j of de`ree 1[
The generalised strain is written]

j � j9¦j0x¦j1y¦j2x1¦j3xy¦j4y1 � JT

F

G

G

j

J

G

G

f

0
x
y

x1

xy

y1

J

G

G

f

F

G

G

j

with] J

F

G

G

j

J

G

G

f

j9

j0

j1

j2

j3

j4

J

G

G

f

F

G

G

j

"70#

and]

ji �"o¹i
00\ o¹i

11\ o¹i
01\ gi

0\ gi
1\ xi

00\ xi
11\ xi

01# i � 9\ 0\ [ [ [ \ 4

In order to save space\ the complementary displacement and the force _eld are given at x � y � 9\
and terms of the same order are grouped together[ This obviously makes it possible to complete
the solution by changing variables[

Completely formal calculation being too time!consuming\ value 9[14 was chosen for Poisson
coe.cient n[

Complementary displacement
Terms of the order of 9

u9
0 � 9[14z 00−0[56

z1

h11 g9
0^ u9

1 � 9[14z 00−0[56
z1

h11 g9
1

u9
2 � −9[222"o¹9

00¦o¹9
11#−"9[9028h1−9[056z1#"x9

00¦x9
11# "71#

Terms of the order of 0

u0
0 � −"9[9028h1−9[056z1#"o¹0

00¦o¹0
11#¦z"9[99583h1−9[9352z1#"x0

00¦x0
11#

u0
1 � −"9[9028h1−9[056z1#"o¹1

00¦o¹1
11#¦z"9[99583h1−9[9352z1#"x1

00¦x0
11#

u0
2 � 09[99468h1−9[000z1¦9[167

z3

h11"g0
0¦g1

1#

Terms of the order of 1

u1
0 � z 09[9090h1−9[006z1¦9[167

z3

h11 g2
0¦z 09[99633h1−9[9683z1¦9[056

z3

h11 g4
0
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¦z 09[99021h1−9[9076z1¦9[9445
z3

h11 g3
1

u1
1 � z 09[9090h1−9[006z1¦9[167

z3

h11 g4
1¦z 09[99633h1−9[9683z1¦9[056

z3

h11 g2
1

u1
2 � z"9[99815h1−9[926z1#"o¹2

00¦o¹4
00¦o¹2

11¦o¹4
11#

¦"9[9999403h3−9[99043h1z1¦9[99506z3#"x2
00¦x4

00¦x2
11¦x4

11#

Stresses " for a Young modulus equal to 0#[
Terms of the order of 9

s9
00 � 0[96o¹9

00¦9[156o¹9
11−z"0[96x9

00¦9[156x9
11#

s9
11 � 9[156o¹9

00¦0[96o¹9
11−z"9[156x9

00¦0[96x9
11#

s9
22 � 9

s9
01 � 9[3o¹9

01−9[3zx9
01

s9
02 � 09[4−1

z1

h11 g9
0 s9

12 � 09[4−1
z1

h11 g9
1 "72#

Terms of the order of 0

s0
00 � 09[100z−0[45

z2

h21 g0
0¦09[9000z−9[111

z2

h21 g1
1

s0
11 � 09[9000z−9[111

z2

h21 g0
0¦09[100z−0[45

z2

h21 g1
1

s0
22 � 0−9[056z¦9[556

z2

h21"g0
0¦g1

1#

s0
01 � 09[0z−9[556

z2

h21"g1
0¦g0

1#

s0
02 � "−9[99167h1¦9[9000z1#"x0

00¦x0
11#^ s0

12 �"−9[99167h1¦9[9000z1#"x1
00¦x1

11#

Terms of the order of 1

s1
00 � "−9[9185h1¦9[245z1#"o¹2

00¦o¹2
11#¦"−9[99630h1¦9[9778z1#"o¹4

00¦o¹4
11#

¦z"9[9043h1−9[090z1#"x2
00¦x2

11#¦z"−9[99321h1¦9[9161z1#"x4
00¦x4

11#

s1
11 � "−9[99630h1¦9[9778z1#"o¹2

00¦o¹2
11#¦"−9[9185h1¦9[245z1#"o¹4

00¦o¹4
11#
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¦z"−9[99321h1¦9[9161z1#"x2
00¦x2

11#¦z"9[9043zh1−9[090z1#"x4
00¦x4

11#

s1
22 � z"9[99074h1−9[9630z1#"x2

00¦x2
11¦x4

00¦x4
11#

s1
01 � "−9[9000h1¦9[022z1#"o¹3

00¦o¹3
11#¦z"9[99445h1−9[926z1#"x3

00¦x3
11#

s1
02 � 09[99755h1−9[118z1¦9[667

z3

h11 g2
0¦09[99187h1−9[9841z1¦9[222

z3

h11 g4
0

¦09[9173h1−9[9558z1¦9[111
z3

h11 g3
1

s1
12 � 09[9173h1−9[9558z1¦9[111

z3

h11 g3
0¦09[99187h1−9[9841z1¦9[222

z3

h11 g2
1

¦09[99755h1−9[118z1¦9[667
z3

h11 g4
1

3[2[2[ Solution of Saint!Venant|s type
The above solution is now used for null membrane strains o¹[ We consider a region of the plate

where the external e}orts are null "p � 9\ c � 9#[ The equation set to be solved by formal
computation is now]

o¹ � 9 "73[0#

div"1# T � 9 "73[1#

div"1# M¦T � 9 Compatibility equations "22# and "23# "73[2#

First it comes that eqn "73[1# implies that s22 vanishes throughout the thickness\ which con_rms
the main hypothesis of Kirchho} and Reissner|s theories[

Finally a general polynomial solution is exhibited[ For sake of space we give only the relations
concerned by displacements\ and also the values of the generalised stress component T0\ together
with 2!D!stress s02[ Integration constants w9\ b0 and b1 are arbitrary[

Principal displacement

V0 � b0z¦0[80
x1z

h1
g9

0¦9[527
x2z

h1
g0

0¦yz 09[4¦2[98
x1

h1
−9[525

y1

h11 g1
0

−yz 09[4¦0[80
x1

h1
−0[296

y1

h11 g0
1−z"xx9

00¦yx9
01¦xyx1

00−9[298x1x0
11¦9[4y1x0

11#

V1 � b1z¦0[80
y1z

h1
g9

1−9[527
y2z

h1
g0

0−xz 09[4−0[920
x1

h1
¦0[80

y1

h11 g1
0
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¦xz 09[4−9[525
x1

h1
¦2[98

y1

h11 g0
1−z"yx9

11¦xx9
01¦xyx0

11¦9[4x1x1
00−9[298y1x1

00#

V2 � w9−b0x−b1y¦x 00−9[527
x1

h11 g9
0¦y 00−9[527

y1

h11 g9
1

¦x1 09[4−9[05
x1

h11 g0
0−y1 09[4−9[05

y1

h11 g0
0

¦xy 09[4−0[92
x1

h1
¦9[525

y1

h11 g1
0¦xy 09[4¦9[525

x1

h1
−0[92

y1

h11 g0
1

¦x1"9[4x9
00¦9[4yx1

00−9[092xx0
11#¦xyx9

01¦y1"9[4x9
11¦9[4xx0

11−9[092yx1
00#

Complementary displacement

u0 � z 09[112−0[38
z1

h11"g9
0¦zg0

0#¦yz 09[123−0[45
z1

h11 g1
0−yz 09[9053−9[00

z1

h11 g0
1

¦z"9[99155h1−9[9066z1#x0
11

u1 � z 09[112−0[38
z1

h11"g9
1−zg0

0#−xz 09[9053−9[00
z1

h11 g1
0¦xz 09[123−0[45

z1

h11 g0
1

¦z"9[99155h1−9[9066z1#x1
00

u2 � 09[9421−9[527
z1

h11"xg9
0¦yg9

01#¦09[155−9[208
z1

h11"x1−y1#g0
0

¦xy 09[9218−9[284
z1

h11"g1
0¦g0

1#

−"9[9028h1−9[056z1#"x9
00¦x9

11#−"9[99421h1−9[527z1#"yx1
00¦xx0

11#
Remark

A slight dissymmetry appears in the above formulas^ indeed\ compatibility equations imply

g0
0¦g1

1 � 9

which need the elimination of any one of these quantities\ here g1
1[

Shear stresses

s02 � 09[400−1[93
z1

h11 g9
0¦ 09[400−1[93

z1

h11 xg0
0¦ 09[496−1[92

z1

h11 yg1
0
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09[99547−9[9152
z1

h11 yg0
1−"9[99095h1−9[99315z1#x0

11

T0 � 9[23h"g9
0¦xg0

0#¦9[227yg1
0¦9[99328hyg0

1−9[999698x0
11

The transverse shear correction coe.cient derived from the _nal formula is 9[740\ as far as the
curvature term x0

11 is neglected[ In fact this coe.cient depends slightly on the choice of eliminated
variables\ which was expected\ since there is no exact local plate constitutive equation[ Another
set of eliminated variables gives the usual 9[722\ and a less symmetrical solution than above[

3[3[ Multi!layer plates

3[3[0[ System to be solved for a multi!layer plate
When the plate\ of uniform2 thickness h\ is made up of N homogeneous layers\ the following

system must be solved[ It derives from "62#\ where continuity conditions at the border between
two successive layers have been introduced]

Di}erential equation

div ðRk ="B¦j¦gradsu
k#Ł �"l0¦l3z#i¦"l1¦l4z#j¦l2k "74[0#

Continuity of stresses and displacements

uk¦0
i "x\ y\ zk¦0# � uk¦0

i¦0 "x\ y\ zk¦0# "74[1#

for k � 0\ [ [ [ \ N−0 and i � 0\ 1\ 2]

sk¦0
i2 "x\ y\ zk¦0# � sk

i2"x\ y\ zk¦0# "74[2#

Upper and lower faces\

s0
i2 0x\ y\ −

h
11� 9 "74[3#

not loaded\ for i � 0\ 1\ 2]

sN
i2 0x\ y\

h
11� 9 "74[4#

Constraint equations

s
k�0\[[[\N g

zk¦0

zk

uk dz � 9 s
k�0\[[[\N g

zk¦0

zk

uk
0z dz � 9^ s

k�0\[[[\N g
zk¦0

zk

uk
1z dz � 9 "74[5#

Side zk is that of the lower face of layer no[ k]

2 And probably also when h is a polynomial of degree n[
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z0 � −
h
1
^ [ [ [^ zN¦0 �

h
1

In order to be able to compare our results with those given in the book written by Batoz and
Dhatt "0889#\ we chose to consider a plate composed of three layers of the same orthotropic
material\ the layer in the middle being twice as thick as the others\ oriented perpendicularly[ The
interfaces are thus]

z0 � −
h
1
^ z1 � −

h
3
^ z2 �

h
3
^ z3 �

h
1

To avoid manipulating four indices we consider that the sti}ness matrix transforms the strain
column]

ðo00\ o11\ o22\ 1o01\ 1o02\ 1o12Ł

into the force column]

ðs00\ s11\ s22\ s01\ s02\ s12Ł

The sti}ness matrices ðRkŁ are\ respectively for layers 0 and 2 on the one hand\ and for layer 1 on
the other]

ðR0Ł � ðR2Ł �

K

H

H

H

H

H

H

H

k

14[1 9[225 9[225 9 9 9

9[225 0[96 9[160 9 9 9

9[225 9[160 0[96 9 9 9

9 9 9 9[4 9 9

9 9 9 9 9[4 9

9 9 9 9 9 9[1

L

H

H

H

H

H

H

H

l

^

ðR1Ł �

K

H

H

H

H

H

H

H

k

0[96 9[225 9[160 9 9 9

9[225 14[1 9[225 9 9 9

9[160 9[225 0[96 9 9 9

9 9 9 9[4 9 9

9 9 9 9 9[1 9

9 9 9 9 9 9[4

L

H

H

H

H

H

H

H

l

It is\ thus\ a composite material\ the _bres of which are oriented along the x axis for the odd layers[
It is also possible to calculate the polynomial solution when _eld j is a polynomial of degree 1

in "x\ y#[ As several pages would be necessary to write it in full\ we shall limit ourselves here to
giving the approximate constitutive equation\ itself extremely informative[

3[3[1[ Multi!layer plate constitutive law
We consider a constant _eld j of generalised strains and the following solution is found for the

numerical data given above[ The upperscript in the brackets indicates the layer number[
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Complementary displacement

u"0#
0 � −09[085h¦9[318z¦9[650

z2

h11 g0

u"1#
0 � 09[316z−0[8

z2

h11 g0

u"2#
0 � 09[085h−9[318z−9[650

z2

h11 g0

u"0#
1 � 09[217h¦0[27z−2[07

z2

h11 g1

u"1#
1 � −09[9351z¦0[16

z2

h11 g1

u"2#
1 � 0−9[217h¦0[27z−2[07

z2

h11 g1

u"0#
2 � −"9[904h¦9[202z#o¹00¦"9[904h−9[142z#o¹11

¦"−9[9026h1¦9[046z1#x00¦"−9[99881h1¦9[016z1#x11

u"1#
2 � −9[142zo¹00−9[202zo¹11

¦"−9[9007h1¦9[016z1#x00¦"−9[99007h1¦9[046z1#x11

u"2#
2 � "9[904h−9[202z#o¹00−"9[904h¦9[142z#o¹11

¦"−9[9026h1¦9[046z1#x00¦"−9[99881h1¦9[016z1#x11

2!D!Stresses

s"0#
00 � 14[0o¹00¦9[140o¹11−14[0zx00−9[140zx11

s"1#
00 � 0[99o¹00¦9[140o¹11−0[99zx00−14[0zx11

s"2#
00 � 14[0o¹00¦9[140o¹11−14[0zx00−9[140zx11

s"0#
11 � 9[140o¹00¦0[99o¹11−9[140zx00−0[99zx11

s"1#
11 � 9[140o¹00¦14[0o¹11−9[140zx00−14[0zx11

s"2#
11 � 9[140o¹00¦0[99o¹11−9[140zx00−0[99zx11

s"0#
22 � 9^ s"1#

22 � 9^ s"2#
22 � 9

s"0#
01 � s"1#

01 � s"2#
01 � 9[4o¹01−9[4zx01

s"0#
02 � s"1#

02 � s"2#
02 � 09[174−0[03

z1

h11 g0
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s"0#
12 � s"1#

12 � s"2#
12 � 09[366−0[80

z1

h11 g1

Generalised stresses

N00 � 02[9ho¹00¦9[140ho¹11^ N11 � 02[9ho¹11¦9[140ho¹00^ N01 � 9[4ho¹01

T0 � 9[089hg0 T1 � 9[207hg1

M00 � 0[73h2g00¦9[9198h2g11^ M11 � 9[9198h2g00¦9[223h2g11^ M01 � 9[9306h2g01

Shear correction factors] 9[433 in x\ 9[897 in y\ to be compared with values 9[46 and 9[77 given by
Batoz and Dhatt "0889#\ p[ 149[

We notice that each of the shear stresses s01\ s02 and s12 is the same polynomial\ of the _rst or
second degree\ throughout the thickness^ Batoz and Dhatt give\ on the contrary\ shear forces s02

and s12 which have discontinuous z!derivatives "cf Batoz and Dhatt "0889#\ p[ 138#[ On the other
hand\ we _nd\ like them\ traction stresses s00 and s11 which have discontinuous z!derivatives[

The graphs below are to be compared with Figs 2\ 3 and 4 illustrating the isotropic homogeneous
plate[ They show the smooth "parabolic# curve of the shear stress\ in contrast with the jagged
graph of the complementary displacement[ The total displacement is of zero derivative on the
upper and lower faces[

Fig[ 2[ Complementary displacement[
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Fig[ 3[ Total displacement[

Fig[ 4[ Shear stress[
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Fig[ 5[ Stress[

Fig[ 6[ Stress[
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Fig[ 7[ Complementary displacement u0[

Fig[ 8[ Complementary displacement u1[
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Fig[ 09[ Total displacement U0[

Fig[ 00[ Total displacement U1[
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4[ Conclusions

A completely new plate theory has been developed\ free from the usual hypotheses concerning
normals\ such as the Kirchho} or ReissnerÐMindlin hypotheses\ or regarding stresses\ such as the
plane stress hypothesis[ Moreover\ all the theoretical articles which the author had the chance to
read deal with an elastic 2!D!behaviour^ on the contrary our theory does not depend on the 2!D!
constitutive equation[

The clue to this approach lies in introducing kinematics which split the total 2!D!displacement
into] a principal displacement\ which veri_es the ReissnerÐMindlin hypothesis and establishes the
algebraic links with the usual plate theory\ and a complementary displacement which preserves
the exactness of the equilibrium equations and enables the constitutive equation of the plate to be
derived from the tridimensional one[

Notice that the principal displacement kinematics could have been chosen simpler\ verifying the
Kirchho} hypothesis for instance[ That would reduce the space of principal displacements\ enlarge
that of complementary displacements\ and need some slight changes in the present theory[ In
particular\ the latter is in no way a so!called {{high order|| theory\ but\ on the contrary\ can be
easily adapted to any kinematics chosen for the principal displacements[

In general\ of course\ the tridimensional equilibrium problem does not reduce to a plate equi!
librium problem[ A condition\ named {{property P|| is needed for the external loads] one must be
able to express their constitutive equations in terms of the principal displacement only\ and their
virtual work in terms of the virtual principal displacement only[ This condition may be summed
up by saying that external loads are just plate loads[ Thus\ property P is nothing but a necessary
condition for the existence of any plate theory; In the classical theories property P is involved in
the Kirchho} or ReissnerÐMindlin hypotheses[

In order to ensure the existence of a local plate constitutive equation we have had to make a
second hypothesis] the plate is thin enough[ This hypothesis is necessary in any plate theory since\
by de_nition\ a local plate constitutive law cannot take into account the possible proximity of an
edge[ Finally\ it appears that our theory is free from any unnecessary hypothesis[

Comparison have been given with some classical results in the case of an elastic behaviour[ The
results are identical in the case of an isotropic and homogeneous material\ somewhat di}erent
when a multi!layer plate is considered\ even if the correction shear factor is approximately the
same[ By using formal computations exact solutions have been exhibited for polynomial data\
which provides a new basis for building Saint!Venant solutions as well as exact elastic plate _nite
elements[

Further worthwhile developments would be concerned with asymptotic plasticity] limit loads
and shake!down domains[
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